Enter a problem...
Linear Algebra Examples
,
Step 1
Subtract from both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Add and .
Step 2.2.1.1.2
Rewrite as .
Step 2.2.1.1.3
Expand using the FOIL Method.
Step 2.2.1.1.3.1
Apply the distributive property.
Step 2.2.1.1.3.2
Apply the distributive property.
Step 2.2.1.1.3.3
Apply the distributive property.
Step 2.2.1.1.4
Simplify and combine like terms.
Step 2.2.1.1.4.1
Simplify each term.
Step 2.2.1.1.4.1.1
Rewrite using the commutative property of multiplication.
Step 2.2.1.1.4.1.2
Multiply by by adding the exponents.
Step 2.2.1.1.4.1.2.1
Move .
Step 2.2.1.1.4.1.2.2
Multiply by .
Step 2.2.1.1.4.1.3
Multiply by .
Step 2.2.1.1.4.1.4
Multiply by .
Step 2.2.1.1.4.1.5
Multiply by .
Step 2.2.1.1.4.1.6
Multiply by .
Step 2.2.1.1.4.1.7
Multiply by .
Step 2.2.1.1.4.2
Add and .
Step 2.2.1.1.5
Rewrite as .
Step 2.2.1.1.6
Expand using the FOIL Method.
Step 2.2.1.1.6.1
Apply the distributive property.
Step 2.2.1.1.6.2
Apply the distributive property.
Step 2.2.1.1.6.3
Apply the distributive property.
Step 2.2.1.1.7
Simplify and combine like terms.
Step 2.2.1.1.7.1
Simplify each term.
Step 2.2.1.1.7.1.1
Multiply by .
Step 2.2.1.1.7.1.2
Move to the left of .
Step 2.2.1.1.7.1.3
Multiply by .
Step 2.2.1.1.7.2
Add and .
Step 2.2.1.2
Simplify by adding terms.
Step 2.2.1.2.1
Add and .
Step 2.2.1.2.2
Add and .
Step 2.2.1.2.3
Add and .
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from .
Step 3.3
Factor the left side of the equation.
Step 3.3.1
Factor out of .
Step 3.3.1.1
Factor out of .
Step 3.3.1.2
Factor out of .
Step 3.3.1.3
Factor out of .
Step 3.3.1.4
Factor out of .
Step 3.3.1.5
Factor out of .
Step 3.3.2
Factor.
Step 3.3.2.1
Factor using the AC method.
Step 3.3.2.1.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 3.3.2.1.2
Write the factored form using these integers.
Step 3.3.2.2
Remove unnecessary parentheses.
Step 3.4
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3.5
Set equal to and solve for .
Step 3.5.1
Set equal to .
Step 3.5.2
Subtract from both sides of the equation.
Step 3.6
Set equal to and solve for .
Step 3.6.1
Set equal to .
Step 3.6.2
Subtract from both sides of the equation.
Step 3.7
The final solution is all the values that make true.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Multiply by .
Step 4.2.1.2
Add and .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Multiply by .
Step 5.2.1.2
Add and .
Step 6
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 7
The result can be shown in multiple forms.
Point Form:
Equation Form:
Step 8